

THE ELECTRONIC LIBRARY OF TRAUMA LECTURES

THE ELECTRONIC LIBRARY OF **TRAUMA LECTURES**

Traumatic Brain Injury

Objectives

At the conclusion of this presentation the participant will be able to:

- Identify the functional anatomy of the brain and the effects of traumatic brain injury (TBI).
- Describe the neurologic assessment and initial management of the TBI patient.
- Identify management strategies to reduce the risk of secondary injury and minimize complications.

Traumatic Brain Injury

Definition:

Disruption in the normal function of the brain that can be caused by a bump, blow, jolt or penetrating head injury

Epidemiology

• 2.9 million TBIs

Ę

- 224,000 hospitalizations
- 61,000 deaths
- Long-term disability

Epidemiology

- Highest rates in the elderly (>75 years)
- More common in males
- Concussions in children

Mechanisms of Injury

Blunt

- Falls
- MVC
- Bicycle crash
- Pedestrian
- Assault

Mechanisms of Injury

Penetrating

Ę

- Gunshot wounds
- Other penetrating

Gaillard, Radiopaedia.org

Skull

- Eight major bones
- Bones rigidly joined together
- Sutures allow for expansion in infants but are fused by adulthood
- The scalp covers the skull and consists of skin, connective tissue fibers, blood vessels and nerves. The scalp has a rich blood supply.

Meninges

SVG by Mysid, original by SEER Development Team [1], Jmarchn, CC BY-SA 3.0, via Wikimedia Commons

Brain

Functions of the Cerebral Lobes

Primary Injury

- Primary injury occurs at impact or in the minutes following the blunt or penetrating injury.
- Primary injuries include:
 - Vascular compromise
 - Diffuse axonal injury
 - Cellular injury

Primary Injury - Prevention

Prevention strategies include:

- Fall prevention
- Bicycle helmets
- Pedestrian safety
 awareness
- Gun violence awareness
- Motor vehicle safety

Focal Injury

Subdural Hematoma

Acute, subacute, chronic

Stretching or tearing of bridging vessels

Presentation varies

Epidural Hematoma

Direct blow

Overlying skull fractures

Arterial bleed- Middle meningeal artery

Variable levels of consciousness

Diffuse Injury

Brain trauma Diffuse axonal injury

Ę

Axon Shear

Skull

TBI Recognition and Management

Prehospital care

ABCDE management

Mitigating secondary injury

Prehospital Care

- Timing and transport
- Oxygenation
- Intubation
- ETCO2
- Blood Pressure
- Transport decisions

Glasgow Coma Scale (GCS)

Ē

Points	Best Eye Opening	Best Verbal Response	Best Motor Response
6			Obeying commands
5		Oriented	Localizing
4	Spontaneous	Confused	Normal Flexion
3	To speech	Words	Abnormal Flexion
2	To pressure	Sounds	Extension
1	None	None	None
NT	Non-testable	Non-testable	Non-testable

Pupil Reactivity Score

Pupils Unreactive to Light	Pupil Reactivity Score
Both Pupils	2
One Pupil	1
Neither Pupil	0

Classification of TBI

- Mild
 - GCS 14 15
- Moderate
 - GCS 9 -13
- Severe
 - GCS 3 8

Signs and Symptoms of Mild TBI

- GCS 13-15
- Brief loss of consciousness
- Normal structural imaging
- Mild symptoms
 - Headache
 - Confusion
 - Difficulty focusing
 - Sensitivity to light and sound

Heads Up: Concussion in Youth Sports

Take athlete out of play

Seek the advice of a health care professional

CDC Fact Sheets

SIGNS OBSERVED BY PARENTS/ GUARDIANS/ COACHES

- Appears dazed or stunned.
- Is confused about assignment or position.
- Forgets sports plays, is unsure of game, score, or opponent.
- Moves clumsily.
- Answers questions slowly.
- Loses consciousness (even briefly).
- Shows behavior or personality changes.
- Can't recall events prior or after hit or fall.

SYMPTOMS REPORTED BY THE ATHLETE

- Headache or "pressure" in the head.
- Nausea or vomiting.
- Balance problems or dizziness.
- Double or blurry vision.
- Sensitivity to light.
- Sensitivity to noise.
- Feeling sluggish, hazy, foggy, groggy.
- Concentration or memory problems
- Confusion.
- Does not "feel right".

Management of Mild TBI

- Assessment
- Diagnostics
- Discharge education

Parents may specifically request to be cleared by EP

- Advise NO return to contact sports until cleared by an HCP familiar with concussion management.
- RTP is a 3-step, multi-day process.
 - Symptom-free off concussion-related medications
 - Cognitive performance back to baseline
 - Successful completion of 6-step (6 day) Return to Play progression
- These cannot be accomplished in an ED setting.

Signs and Symptoms of Moderate TBI

- GCS 9-13
- Loss of consciousness
- Altered mental status
 - Mild confusion
 - Lethargy
 - Positive or negative bleed
 on CT
- Ongoing assessment

Management of Moderate TBI

- ABCDE
- History
- Labs
- Prevent secondary injury
- Ongoing management

Signs and Symptoms of Severe TBI

- GCS 3-8
- Prolonged loss of consciousness
- Abnormal neurological signs
 - Posturing
 - Pupillary changes

Initial Management of Severe TBI Patient

- Primary survey and resuscitation
 - ABCDE
- Secondary survey
 - Head-to-toe assessment
 - AMPLE
 - Diagnostics

A- Airway

- Obtain definitive airway
 - Cervical spine immobilization
- GCS \leq 8- intubate
 - Rapid Sequence Intubation (RSI)
 - The seven Ps

B-Breathing

Goals

F

- Pa O2 > 60mmHg
- O2 sat > 90%
- ETCO2 35-45mmHg
- Avoid hyperventilation

C-Circulation

- Control hemorrhage
- Maintain MAP > 60mmHg
- Manage volume
- Use of vasopressors

D - Disability

• GCS

- Ongoing assessment
 - Pupils
 - Motor function

Pupils

Both dilated

Ē

- Nonreactive: brainstem
- Reactive: often reversible

- Slow: cranial nerve III
- Fluttering: often hysteria

- **Unilaterally dilated**
- Reactive: ICP increasing
- Nonreactive (altered LOC): increased ICP
- Nonreactive (normal LOC): not from head injury

E – **Exposure/Environment**

- Expose to identify all injuries
- Maintain normothermia

Initial Management – Secondary Survey

Systematic assessment

- Battles sign
- Raccoon eyes
- Rhinorrhea / Otorrhea
- Motor and sensory deficits
- Pupillary response
- Reflexes

Retrieved December 6, 2021 from https://www.slideshare.net/rozymea/head-injuries-58458547

Initial Management – Secondary Survey

Adjuncts:

- Labs
- Neurologic/ICP Monitoring
- Cardiac Monitoring
- Arterial Line
- Pulse Oximetry/ Capnography
- Core Temperature

Secondary Injury

Inadequate Perfusion

Hypoxia Secondary Biochemical Injury Changes

Increased ICP

Secondary Injury

F

- Edema
- Infarction
- Secondary hemorrhage
- Herniation
- Changes to the brain:
 - Neurochemical
 - Metabolic
 - Cellular

Anticoagulation Reversal

- Identify anticoagulation medications
- Blood testing
- Indications for reversal
- Choose the appropriate reversal agent

Some Common Examples

- Coumadin (warfarin): Vitamin K, 4-factor prothrombin complex concentrate (PCC) such as Kcentra, plasma if 4-factor PCC not available
- Pradaxa (dabigatran): Praxbind (idarucizumab)
- Xarelto (rivaroxaban), Eliquis (apixaban), Savaysa (edoxaban):
- Andexxa (andexanet alfa), FEIBA (anti-inhibitor coagulant complex), activated charcoal if other options are not available
- Lovenox, unfractionated Heparin: Protamine sulfate
- Aspirin: DDAVP (desmopressin)

Cerebral Perfusion Pressure

CPP = MAP - ICP

Cerebral Perfusion Pressure (CPP) = Mean Arterial Pressure (MAP) – Intracranial Pressure (ICP)

Represents the pressure gradient driving cerebral blood flow and oxygen and metabolite delivery

Goal = 60-70 mmHg

Monro- Kellie Doctrine

- The skull is a nonexpandable vault.
- The total volume of intracranial contents must remain constant.
 - Brain 80%
 - Blood 10%
 - CSF 10%
- An increase in one results in a decrease in one or two of the remaining components.

Intracranial Volume

Autoregulation

- The intrinsic ability of the cerebral blood vessels to dilate or constrict in response to changes in the brain environment.
- Enables cerebral blood vessels to maintain cerebral blood flow in presence of wide fluctuation in mean arterial pressure.

Autoregulation - Impaired

- Autoregulation fails if MAP is < 50 or > 150 mmHg.
- Autoregulation failure affects CPP by impacting the pressure gradient that drives cerebral blood flow.

Intracranial Pressure (ICP) Monitoring

- ICP reflects the pressure inside the head
- Normal ICP: < 15mmHg
- Monitoring devices
 - External ventricular drain
 - Allows for drainage of CSF to lower ICP
 - Subarachnoid screw or bolt
 - Subdural catheter
 - Intraparenchymal fiberoptic catheter

Intracranial Pressure (ICP) Monitoring

- Indications:
 - All salvageable patients with GCS 3-8 and abnormal CT
 - Patients with normal CT and two or more of the following:
 - Over 40 years of age
 - Unilateral or bilateral motor posturing
 - SBP < 90mmHg
- TBI management using ICP monitoring is recommended to reduce mortality.

Advanced Monitoring

- PbtO₂
- Licox therapy
- Transcranial doppler (TCD)
- SjVo₂
- AVDO₂

Clinical Manifestations of Secondary Injury

Ę

Late signs and symptoms of increased ICP:

- Posturing
- Bradycardia
- Altered respiratory patterns
- Hypertension
- Unilateral or bilateral pupil dilation

NCBI.NLM.NIH.gov

Cushing's Triad

Three signs of an increase in ICP:

- Increased SBP (with widening pulse pressure)
- Bradycardia
- Irregular respirations Last attempt of the brain to compensate during the process of herniation.

These signs are opposite of HYPOVOLEMIC SHOCK:

- Decreased SBP
- Tachycardia
- Increased respiratory
 rate

Surgical Intervention

- Burr Holes
- Craniotomy
- Decompressive Craniectomy

Das, slideshare.net

ELECTRONIC LIBRARY OF TRAUMA LECTURES

- Maintain normal ICP
 - CSF drainage
 - Hyperosmolar therapy
 - Mannitol
 - Hypertonic Saline
- Maintain normal BP- Goal SBP
 - > 100mmHg for 50-69 years
 - > 110 mmHg for 15-49 and > 70 years
- Ventilation
 - Goal PaCo2 of 35-45 mmHg

Rmosler2100, CC BY-SA 3.0, via Wikimedia Commons

Seizure Management

- Prophylactic use of phenytoin or valproate is not recommended for preventing late PTS.
- Phenytoin is recommended to decrease the incidence of early PTS (within 7 d of injury), when the overall benefit is thought to outweigh the complications associated with such treatment.
- At the present time, there is insufficient evidence to recommend levetiracetam (Kepra SR) compared with phenytoin regarding efficacy in preventing early post-traumatic seizures and toxicity.
- Barbiturates are not recommended to induce burst suppression measured by electroencephalogram to prevent the development of intracranial hypertension.

Pain and Sedation Management

- Pain control impacts ICP management
- Minimal dose possible
- Monitor sedation levels

- Early tube feeds: Obtain basal caloric replacement by the fifth day.
- Transgastric jejunal feeding is recommended to reduce the incidence of ventilator associated pneumonia.
- Venous thrombus event prophylaxis.
- Monitor blood glucose.
- Early tracheostomy.

Therapies to Avoid

Prophylactic Hypothermia

- Early, short-term prophylactic hypothermia is not recommended to improve outcomes in patients with diffuse injury.
- Hypothermia risks include coagulopathy, immunosuppression and cardiac dysrhythmias.

Steroids

 High-dose methylprednisolone is associated with increased mortality and is contraindicated.

Nursing Interventions

Patient Positioning

- Elevate head of bed
- Maintain neutral alignment of head and neck
- Avoid elevating legs at the knees

Environmental Control

- Avoid overstimulation
- Bundle care to provide periods of rest
- Comfort measures

Herniation

Ē

Supratentorial

- 1. Uncal
- 2. Central
- 3. Cingulate
- 4. Transcalvarial

Infratentorial

- 5. Upward Cerebellar
- 6. Tonsillar

By RupertMillard - Brain herniation types.svg by Delldot, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7825361

Brain Death

- Irreversible loss of all functions of the brain, including brainstem.
- Legally and clinically dead.
- Essential findings:
 - Coma
 - Lack of brainstem reflexes
 - Apnea

End of Life

Ę

End of Life Decisions

- Family support
- Palliative Care
- Organ Donation

Post-Acute Care

- Early discharge planning
- PT and OT consults
- Speech consultation
- Physical Medicine and Rehabilitation consults
- Inpatient/outpatient rehabilitation

Risks for Post-Acute Complications

- Depression
- Dementia
- Alcoholism / Drug abuse
- Post traumatic stress disorder

PTSD

Flashbacks Nightmares Arousal Social avoidance Impaired concentration Tension headache Sleep disturbances Irritability mTBI

Neuro deficit Seizure Migraine like headache

Summary

- TBI is a major healthcare problem.
- The initial management of the TBI patient is critical to mitigate secondary injury and complications.
- Nursing interventions are valuable in management and outcomes of TBI patients.

